Ensemble MCMC: Accelerating Pseudo-Marginal MCMC for State Space Models using the Ensemble Kalman Filter

نویسندگان

چکیده

Particle Markov chain Monte Carlo (pMCMC) is now a popular method for performing Bayesian statistical inference on challenging state space models (SSMs) with unknown static parameters. It uses particle filter (PF) at each iteration of an MCMC algorithm to unbiasedly estimate the likelihood given parameter value. However, pMCMC can be computationally intensive when large number particles in PF required, such as data are highly informative, model misspecified and/or time series long. In this paper we exploit ensemble Kalman (EnKF) developed assimilation literature speed up pMCMC. We replace unbiased biased EnKF within sample over parameter. On wide class different non-linear SSM models, demonstrate that our extended (eMCMC) methods significantly reduce computational cost whilst maintaining reasonable accuracy. also propose several extensions vanilla eMCMC further improve efficiency. Computer code implement all examples downloaded from https://github.com/cdrovandi/Ensemble-MCMC.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geospatial state space estimation using an Ensemble Kalman Filter

Incorporating temporal (continuous) data into more common discrete data point geospatial models is necessary for dynamic real time model building. The models are otherwise limited in their use for numerical modelling, simulation and the prediction of climatic states over time. By adopting a Bayesian approach it is shown here to be possible to estimate the dynamic behaviour of unobserved climate...

متن کامل

MCMC for State Space Models

In this chapter we look at MCMC methods for a class of time-series models, called statespace models. The idea of state-space models is that there is an unobserved state of interest the evolves through time, and that partial observations of the state are made at successive time-points. We will denote the state by X and observations by Y , and assume that our state space model has the following s...

متن کامل

Resampling the ensemble Kalman filter

Ensemble Kalman filters (EnKF) based on a small ensemble tend to provide collapse of the ensemble over time. It is shown that this collapse is caused by positive coupling of the ensemble members due to use of one common estimate of the Kalman gain for the update of all ensemble members at each time step. This coupling can be avoided by resampling the Kalman gain from its sampling distribution i...

متن کامل

Particle MCMC algorithms and architectures for accelerating inference in state-space models☆

Particle Markov Chain Monte Carlo (pMCMC) is a stochastic algorithm designed to generate samples from a probability distribution, when the density of the distribution does not admit a closed form expression. pMCMC is most commonly used to sample from the Bayesian posterior distribution in State-Space Models (SSMs), a class of probabilistic models used in numerous scientific applications. Nevert...

متن کامل

Optimal Localization for Ensemble Kalman Filter Systems

In ensemble Kalman filter methods, localization is applied for both avoiding the spurious correlations of distant observations and increasing the effective size of the ensemble space. The procedure is essential in order to provide quality assimilation in large systems; however a severe localization can cause imbalances that impact negatively on the accuracy of the analysis. We want to understan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bayesian Analysis

سال: 2022

ISSN: ['1936-0975', '1931-6690']

DOI: https://doi.org/10.1214/20-ba1251